behind the characterization and remediation of Non-Aqueous Phase Liquids (NAPLs) using plain LNAPL transmissivity as well.

USGS LNAPL Facts

RTDF NAPL Publications

EPA NAPL Guidance

ASTM LCSM Guide

The perching contact can be identified as the elevation of the ANI when the NAPL discharge rate rises above the perching contact, the NAPL in the well is in communication with the NAPL in the formation. For further increases in ANT, the NAPL drawdown and discharge rate linearly decrease as shown in Figure 5.

The perching contact can be identified on the ANT DGP if the equilibrium NWI has risen above the perching contact. Changes in the CGWS and may be well below the perching contact.

The characteristic ANT DGP for confined conditions is a wedge shape where the NAPL/water interface is an inverted V shape. For unconfined conditions the DGP is a flat or horizontal line indicating ANI equilibrium. For perched conditions the DGP is a flat or horizontal line indicating that a perched condition exists. The perching contact can be identified as a change in the DGP that is an inflection point where the trend lines switch from the linear to the non-linear region.

The ANI (measured in feet or meters) is the top of the MNI. The ANI will vary with changes in groundwater potentiometric surface (CGWS). The characteristic DGP for unconfined, confined, and perched conditions are shown in Figure 3.

Figure 3 shows characteristic DvD curves for unconfined, confined, and perched conditions. The MNI for confined and perched LNAPL (but not unconfined) is a critical element of the conceptual site model (CSM). This second article focuses on the understanding of the MNI and its importance to NAPL science.

The MNI is the thickness of formation where NAPL is present above residual saturation. The MNI can be measured in the field using direct push devices and core sampling. It can also be estimated from laboratory studies. For both confined and perched LNAPL, the MNI is equal to the LNAPL thickness (LNAPL) is a critical element of the CSM. This second article focuses on the understanding of the MNI and its importance to NAPL science.

The perching contact can be identified as the elevation of the ANI when the NAPL discharge rate rises above the perching contact, the NAPL in the well is in communication with the NAPL in the formation. For further increases in ANT, the NAPL drawdown and discharge rate linearly decrease as shown in Figure 5.

The perching contact can be identified on the ANT DGP if the equilibrium NWI has risen above the perching contact. Changes in the CGWS and may be well below the perching contact.

The characteristic ANT DGP for confined conditions is a wedge shape where the NAPL/water interface is an inverted V shape. For unconfined conditions the DGP is a flat or horizontal line indicating ANI equilibrium. For perched conditions the DGP is a flat or horizontal line indicating that a perched condition exists. The perching contact can be identified as a change in the DGP that is an inflection point where the trend lines switch from the linear to the non-linear region.

The ANI (measured in feet or meters) is the top of the MNI. The ANI will vary with changes in groundwater potentiometric surface (CGWS). The characteristic DGP for unconfined, confined, and perched conditions are shown in Figure 3.

Figure 3 shows characteristic DvD curves for unconfined, confined, and perched conditions. The MNI for confined and perched LNAPL (but not unconfined) is a critical element of the conceptual site model (CSM). This second article focuses on the understanding of the MNI and its importance to NAPL science.

The MNI is the thickness of formation where NAPL is present above residual saturation. The MNI can be measured in the field using direct push devices and core sampling. It can also be estimated from laboratory studies. For both confined and perched LNAPL, the MNI is equal to the LNAPL thickness (LNAPL) is a critical element of the CSM. This second article focuses on the understanding of the MNI and its importance to NAPL science.

The perching contact can be identified as the elevation of the ANI when the NAPL discharge rate rises above the perching contact, the NAPL in the well is in communication with the NAPL in the formation. For further increases in ANT, the NAPL drawdown and discharge rate linearly decrease as shown in Figure 5.

The perching contact can be identified on the ANT DGP if the equilibrium NWI has risen above the perching contact. Changes in the CGWS and may be well below the perching contact.

The characteristic ANT DGP for confined conditions is a wedge shape where the NAPL/water interface is an inverted V shape. For unconfined conditions the DGP is a flat or horizontal line indicating ANI equilibrium. For perched conditions the DGP is a flat or horizontal line indicating that a perched condition exists. The perching contact can be identified as a change in the DGP that is an inflection point where the trend lines switch from the linear to the non-linear region.

The ANI (measured in feet or meters) is the top of the MNI. The ANI will vary with changes in groundwater potentiometric surface (CGWS). The characteristic DGP for unconfined, confined, and perched conditions are shown in Figure 3.

Figure 3 shows characteristic DvD curves for unconfined, confined, and perched conditions. The MNI for confined and perched LNAPL (but not unconfined) is a critical element of the conceptual site model (CSM). This second article focuses on the understanding of the MNI and its importance to NAPL science.

The MNI is the thickness of formation where NAPL is present above residual saturation. The MNI can be measured in the field using direct push devices and core sampling. It can also be estimated from laboratory studies. For both confined and perched LNAPL, the MNI is equal to the LNAPL thickness (LNAPL) is a critical element of the CSM. This second article focuses on the understanding of the MNI and its importance to NAPL science.

The perching contact can be identified as the elevation of the ANI when the NAPL discharge rate rises above the perching contact, the NAPL in the well is in communication with the NAPL in the formation. For further increases in ANT, the NAPL drawdown and discharge rate linearly decrease as shown in Figure 5.

The perching contact can be identified on the ANT DGP if the equilibrium NWI has risen above the perching contact. Changes in the CGWS and may be well below the perching contact.

The characteristic ANT DGP for confined conditions is a wedge shape where the NAPL/water interface is an inverted V shape. For unconfined conditions the DGP is a flat or horizontal line indicating ANI equilibrium. For perched conditions the DGP is a flat or horizontal line indicating that a perched condition exists. The perching contact can be identified as a change in the DGP that is an inflection point where the trend lines switch from the linear to the non-linear region.

The ANI (measured in feet or meters) is the top of the MNI. The ANI will vary with changes in groundwater potentiometric surface (CGWS). The characteristic DGP for unconfined, confined, and perched conditions are shown in Figure 3.

Figure 3 shows characteristic DvD curves for unconfined, confined, and perched conditions. The MNI for confined and perched LNAPL (but not unconfined) is a critical element of the conceptual site model (CSM). This second article focuses on the understanding of the MNI and its importance to NAPL science.

The MNI is the thickness of formation where NAPL is present above residual saturation. The MNI can be measured in the field using direct push devices and core sampling. It can also be estimated from laboratory studies. For both confined and perched LNAPL, the MNI is equal to the LNAPL thickness (LNAPL) is a critical element of the CSM. This second article focuses on the understanding of the MNI and its importance to NAPL science.

The perching contact can be identified as the elevation of the ANI when the NAPL discharge rate rises above the perching contact, the NAPL in the well is in communication with the NAPL in the formation. For further increases in ANT, the NAPL drawdown and discharge rate linearly decrease as shown in Figure 5.

The perching contact can be identified on the ANT DGP if the equilibrium NWI has risen above the perching contact. Changes in the CGWS and may be well below the perching contact.

The characteristic ANT DGP for confined conditions is a wedge shape where the NAPL/water interface is an inverted V shape. For unconfined conditions the DGP is a flat or horizontal line indicating ANI equilibrium. For perched conditions the DGP is a flat or horizontal line indicating that a perched condition exists. The perching contact can be identified as a change in the DGP that is an inflection point where the trend lines switch from the linear to the non-linear region.

The ANI (measured in feet or meters) is the top of the MNI. The ANI will vary with changes in groundwater potentiometric surface (CGWS). The characteristic DGP for unconfined, confined, and perched conditions are shown in Figure 3.

Figure 3 shows characteristic DvD curves for unconfined, confined, and perched conditions. The MNI for confined and perched LNAPL (but not unconfined) is a critical element of the conceptual site model (CSM). This second article focuses on the understanding of the MNI and its importance to NAPL science.

The MNI is the thickness of formation where NAPL is present above residual saturation. The MNI can be measured in the field using direct push devices and core sampling. It can also be estimated from laboratory studies. For both confined and perched LNAPL, the MNI is equal to the LNAPL thickness (LNAPL) is a critical element of the CSM. This second article focuses on the understanding of the MNI and its importance to NAPL science.

The perching contact can be identified as the elevation of the ANI when the NAPL discharge rate rises above the perching contact, the NAPL in the well is in communication with the NAPL in the formation. For further increases in ANT, the NAPL drawdown and discharge rate linearly decrease as shown in Figure 5.

The perching contact can be identified on the ANT DGP if the equilibrium NWI has risen above the perching contact. Changes in the CGWS and may be well below the perching contact.

The characteristic ANT DGP for confined conditions is a wedge shape where the NAPL/water interface is an inverted V shape. For unconfined conditions the DGP is a flat or horizontal line indicating ANI equilibrium. For perched conditions the DGP is a flat or horizontal line indicating that a perched condition exists. The perching contact can be identified as a change in the DGP that is an inflection point where the trend lines switch from the linear to the non-linear region.

The ANI (measured in feet or meters) is the top of the MNI. The ANI will vary with changes in groundwater potentiometric surface (CGWS). The characteristic DGP for unconfined, confined, and perched conditions are shown in Figure 3.

Figure 3 shows characteristic DvD curves for unconfined, confined, and perched conditions. The MNI for confined and perched LNAPL (but not unconfined) is a critical element of the conceptual site model (CSM). This second article focuses on the understanding of the MNI and its importance to NAPL science.

The MNI is the thickness of formation where NAPL is present above residual saturation. The MNI can be measured in the field using direct push devices and core sampling. It can also be estimated from laboratory studies. For both confined and perched LNAPL, the MNI is equal to the LNAPL thickness (LNAPL) is a critical element of the CSM. This second article focuses on the understanding of the MNI and its importance to NAPL science.